--- /dev/null
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "project_hentai_ai_waifu.ipynb",
+ "provenance": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ },
+ "accelerator": "GPU"
+ },
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "QaGZdBqh5reK"
+ },
+ "outputs": [],
+ "source": [
+ "# Click Runtime -> Change runtime type -> select Hardware accelerator: GPU\n",
+ "!pip install -Uqq fastbook\n",
+ "import fastbook\n",
+ "fastbook.setup_book()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from fastai.vision.all import *\n",
+ "import pandas as pd\n",
+ "from google.colab import drive\n",
+ "base_path = '/content/drive'\n",
+ "drive.mount(base_path)\n",
+ "img_path = f\"{base_path}/MyDrive/dataset_thighs_cropped\""
+ ],
+ "metadata": {
+ "id": "F-3tVQpn59D_"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# https://docs.fast.ai/vision.data.html#ImageDataLoaders.from_df\n",
+ "# https://eagerai.github.io/fastai/reference/ImageDataLoaders_from_df.html\n",
+ "size = 1000\n",
+ "user = \"UserC\" # [UserA, UserB, UserC]\n",
+ "df = pd.read_csv(f'{img_path}/{user}.csv')[:size]\n",
+ "print(df['label'].value_counts())\n",
+ "train_df = df.iloc[:int(size*0.9)].copy()\n",
+ "test_df = df.iloc[int(size*0.9):].copy() # 10% testing set"
+ ],
+ "metadata": {
+ "id": "yZzZlcb1EvBT"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# https://medium.com/unpackai/data-augmentation-with-fastai-library-b4f8ffb6f00d\n",
+ "# https://rdrr.io/cran/fastai/man/aug_transforms.html\n",
+ "\n",
+ "dls = ImageDataLoaders.from_df(train_df, img_path, bs=10, valid_pct = 0.11111111112 # 10% validation set\n",
+ " ,item_tfms=RandomResizedCrop(224, min_scale=0.75)\n",
+ " ,batch_tfms=aug_transforms(min_zoom=1.0, max_zoom=1.8, do_flip=True, flip_vert=True, max_rotate=70, max_lighting=0.5, p_lighting=0.4)\n",
+ " )\n",
+ "dls.show_batch(nrows=3, ncols=3)\n",
+ "#dls.train.show_batch(max_n=10, nrows=2, unique=True) # Showing batch_tfms"
+ ],
+ "metadata": {
+ "id": "IvTcHowo6sfh"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "learn = vision_learner(dls, resnet34, metrics=error_rate)\n",
+ "learn.fine_tune(20)\n",
+ "#learn.show_results()"
+ ],
+ "metadata": {
+ "id": "JyjHOdM5wvQw"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# https://forums.fast.ai/t/saving-and-using-a-model/47216/3\n",
+ "from datetime import datetime\n",
+ "now = datetime.now()\n",
+ "model_path = f'{base_path}/MyDrive/ai_models/wAiFu-{now.strftime(\"%Y%m%d-%H%M%S\")}-{user}.pkl'\n",
+ "learn.export(model_path)\n",
+ "learn = load_learner(model_path)\n",
+ "\n",
+ "#https://forums.fast.ai/t/a-brief-guide-to-test-sets-in-v2-you-can-do-labelled-now-too/57054\n",
+ "test_dl = dls.test_dl(test_df, with_labels=True)\n",
+ "#test_dl.show_batch(nrows=3, ncols=3)\n",
+ "\n",
+ "learn.validate(dl=test_dl)\n",
+ "interp = ClassificationInterpretation.from_learner(learn, dl=test_dl)\n",
+ "interp.plot_confusion_matrix(figsize=(12,12), dpi=80)"
+ ],
+ "metadata": {
+ "id": "1wCCrFSKgpTo"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "learn.show_results(dl=test_dl)"
+ ],
+ "metadata": {
+ "id": "XgV9swnOUYnK"
+ },
+ "execution_count": null,
+ "outputs": []
+ }
+ ]
+}
\ No newline at end of file